linux下system函数的简单分析

简单分析了linux下system函数的相关内容,具体内容如下

  int  __libc_system (const char *line)  {   if (line == NULL)    /* Check that we have a command processor available. It might      not be available after a chroot(), for example. */    return do_system ("exit 0") == 0;     return do_system (line);  }  weak_alias (__libc_system, system)  

代码位于glibc/sysdeps/posix/system.c,这里system是__libc_system的弱别名,而__libc_system是do_system的前端函数,进行了参数的检查,接下来看do_system函数。

  static int  do_system (const char *line)  {   int status, save;   pid_t pid;   struct sigaction sa;  #ifndef _LIBC_REENTRANT   struct sigaction intr, quit;  #endif   sigset_t omask;     sa.sa_handler = SIG_IGN;   sa.sa_flags = 0;   __sigemptyset (&sa.sa_mask);     DO_LOCK ();   if (ADD_REF () == 0)    {     if (__sigaction (SIGINT, &sa, &intr) < 0)    {     (void) SUB_REF ();     goto out;    }     if (__sigaction (SIGQUIT, &sa, &quit) < 0)    {     save = errno;     (void) SUB_REF ();     goto out_restore_sigint;    }    }   DO_UNLOCK ();     /* We reuse the bitmap in the 'sa' structure. */   __sigaddset (&sa.sa_mask, SIGCHLD);   save = errno;   if (__sigprocmask (SIG_BLOCK, &sa.sa_mask, &omask) < 0)    {  #ifndef _LIBC     if (errno == ENOSYS)    __set_errno (save);     else  #endif    {     DO_LOCK ();     if (SUB_REF () == 0)      {       save = errno;       (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);      out_restore_sigint:       (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);       __set_errno (save);      }    out:     DO_UNLOCK ();     return -1;    }    }    #ifdef CLEANUP_HANDLER   CLEANUP_HANDLER;  #endif    #ifdef FORK   pid = FORK ();  #else   pid = __fork ();  #endif   if (pid == (pid_t) 0)    {     /* Child side. */     const char *new_argv[4];     new_argv[0] = SHELL_NAME;     new_argv[1] = "-c";     new_argv[2] = line;     new_argv[3] = NULL;       /* Restore the signals. */     (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);     (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);     (void) __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL);     INIT_LOCK ();       /* Exec the shell. */     (void) __execve (SHELL_PATH, (char *const *) new_argv, __environ);     _exit (127);    }   else if (pid < (pid_t) 0)    /* The fork failed. */    status = -1;   else    /* Parent side. */    {     /* Note the system() is a cancellation point. But since we call     waitpid() which itself is a cancellation point we do not     have to do anything here. */     if (TEMP_FAILURE_RETRY (__waitpid (pid, &status, 0)) != pid)    status = -1;    }    #ifdef CLEANUP_HANDLER   CLEANUP_RESET;  #endif     save = errno;   DO_LOCK ();   if ((SUB_REF () == 0      && (__sigaction (SIGINT, &intr, (struct sigaction *) NULL)      | __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL)) != 0)     || __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL) != 0)    {  #ifndef _LIBC     /* glibc cannot be used on systems without waitpid. */     if (errno == ENOSYS)    __set_errno (save);     else  #endif    status = -1;    }   DO_UNLOCK ();     return status;  }    do_system  

首先函数设置了一些信号处理程序,来处理SIGINT和SIGQUIT信号,此处我们不过多关心,关键代码段在这里

  #ifdef FORK   pid = FORK ();  #else   pid = __fork ();  #endif   if (pid == (pid_t) 0)    {     /* Child side. */     const char *new_argv[4];     new_argv[0] = SHELL_NAME;     new_argv[1] = "-c";     new_argv[2] = line;     new_argv[3] = NULL;       /* Restore the signals. */     (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);     (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);     (void) __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL);     INIT_LOCK ();       /* Exec the shell. */     (void) __execve (SHELL_PATH, (char *const *) new_argv, __environ);     _exit (127);    }   else if (pid < (pid_t) 0)    /* The fork failed. */    status = -1;   else    /* Parent side. */    {     /* Note the system() is a cancellation point. But since we call     waitpid() which itself is a cancellation point we do not     have to do anything here. */     if (TEMP_FAILURE_RETRY (__waitpid (pid, &status, 0)) != pid)    status = -1;    }  

首先通过前端函数调用系统调用fork产生一个子进程,其中fork有两个返回值,对父进程返回子进程的pid,对子进程返回0。所以子进程执行6-24行代码,父进程执行30-35行代码。

子进程的逻辑非常清晰,调用execve执行SHELL_PATH指定的程序,参数通过new_argv传递,环境变量为全局变量__environ。

其中SHELL_PATH和SHELL_NAME定义如下

  #define  SHELL_PATH  "/bin/sh"  /* Path of the shell. */  #define  SHELL_NAME  "sh"    /* Name to give it. */ 

其实就是生成一个子进程调用/bin/sh -c "命令"来执行向system传入的命令。 

下面其实是我研究system函数的原因与重点:

在CTF的pwn题中,通过栈溢出调用system函数有时会失败,听师傅们说是环境变量被覆盖,但是一直都是懵懂,今天深入学习了一下,总算搞明白了。

在这里system函数需要的环境变量储存在全局变量__environ中,那么这个变量的内容是什么呢。

__environ是在glibc/csu/libc-start.c中定义的,我们来看几个关键语句。

  # define LIBC_START_MAIN __libc_start_main

__libc_start_main是_start调用的函数,这涉及到程序开始时的一些初始化工作,对这些名词不了解的话可以看一下。接下来看LIBC_START_MAIN函数。

  STATIC int  LIBC_START_MAIN (int (*main) (int, char **, char ** MAIN_AUXVEC_DECL),       int argc, char **argv,  #ifdef LIBC_START_MAIN_AUXVEC_ARG       ElfW(auxv_t) *auxvec,  #endif       __typeof (main) init,       void (*fini) (void),       void (*rtld_fini) (void), void *stack_end)  {   /* Result of the 'main' function. */   int result;     __libc_multiple_libcs = &_dl_starting_up && !_dl_starting_up;    #ifndef SHARED   char **ev = &argv[argc + 1];     __environ = ev;     /* Store the lowest stack address. This is done in ld.so if this is     the code for the DSO. */   __libc_stack_end = stack_end;        ......   /* Nothing fancy, just call the function. */   result = main (argc, argv, __environ MAIN_AUXVEC_PARAM);  #endif     exit (result);  }  

我们可以看到,在没有define SHARED的情况下,在第19行定义了__environ的值。启动程序调用LIBC_START_MAIN之前,会先将环境变量和argv中的字符串保存起来(其实是保存到栈上),然后依次将环境变量中各项字符串的地址,argv中各项字符串的地址和argc入栈,所以环境变量数组一定位于argv数组的正后方,以一个空地址间隔。所以第17行的&argv[argc + 1]语句就是取环境变量数组在栈上的首地址,保存到ev中,最终保存到__environ中。第203行调用main函数,会将__environ的值入栈,这个被栈溢出覆盖掉没什么问题,只要保证__environ中的地址处不被覆盖即可。

所以,当栈溢出的长度过大,溢出的内容覆盖了__environ中地址中的重要内容时,调用system函数就会失败。具体环境变量距离溢出地址有多远,可以通过在_start中下断查看。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

参与评论